博客
关于我
含重根的三阶实对称矩阵的快速对角化方法
阅读量:240 次
发布时间:2019-03-01

本文共 806 字,大约阅读时间需要 2 分钟。

实对称矩阵的对角化

在实对称矩阵的学习过程中,许多矩阵可以快速对角化,尤其是三阶矩阵。以下是一些实用的技巧和方法。

一、猜根法计算特征值

  • 特征值之和:三阶矩阵的特征值之和等于矩阵对角线元素之和。假设特征值均为整数,特征值之和也很容易计算。

  • 特征值之积:特征值之积等于矩阵的行列式。具体数值可以通过计算矩阵的行列式得到。

  • 整数特征值:由于特征值是整数,且特征值之和与之积已知,可以通过枚举法快速找到特征值。

  • 例如,特征值之和为3,特征值之积为5。假设特征值为a, b, c,则a + b + c = 3,abc = 5。通过枚举,唯一可能的整数解是5, -1, -1。

    二、秩一矩阵的应用

    秩一矩阵在考试中常出现,具有特殊结构,允许快速计算。

  • 矩阵表示:秩一矩阵可以表示为αβ^T,其中α、β为列向量。

  • 幂运算:秩一矩阵的k次幂可表示为(α^Tβ)^(k-1)A。

  • :矩阵的迹等于α^Tβ。

  • 特征值:秩一矩阵的特征值为α^Tβ, 0, 0, ..., 0。其中一个特征向量是α本身。

  • 对角化:秩一矩阵可以对角化,其对角线元素即为特征值。

  • 定理一:如果矩阵A可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵,则A的特征值为tr(B)+c, c, ..., c。

    定理二:如果一个三阶实对称矩阵具有一个二重特征根,则可以分解为一个秩一矩阵B加上一个常数c乘单位矩阵。

    三、实战演练

    在实际操作中,快速计算特征值和特征向量是关键。

  • 特征值计算:通过特征值之和与之积,猜测特征值,例如矩阵特征值之和为1,之积为-12,猜测特征值为-3, 2, 2。

  • 秩一矩阵识别:检查矩阵是否为全零矩阵加上常数倍的单位矩阵。例如矩阵A = B + E,其中B为全1矩阵,E为单位矩阵。

  • 特征向量求解:对于二重特征值,通过矩阵分解求得特征向量,并利用向量外积计算正交矩阵。

  • 通过以上方法,可以快速解决实对称矩阵的对角化问题,节省大量时间。

    转载地址:http://bamv.baihongyu.com/

    你可能感兴趣的文章
    noi 1996 登山
    查看>>
    noi 7827 质数的和与积
    查看>>
    NOI-1.3-11-计算浮点数相除的余数
    查看>>
    noi.ac #36 模拟
    查看>>
    NOI2010 海拔(平面图最大流)
    查看>>
    NOIp2005 过河
    查看>>
    NOIP2011T1 数字反转
    查看>>
    NOIP2014 提高组 Day2——寻找道路
    查看>>
    noip借教室 题解
    查看>>
    NOIP模拟测试19
    查看>>
    NOIp模拟赛二十九
    查看>>
    Vue3+element plus+sortablejs实现table列表拖拽
    查看>>
    Nokia5233手机和我装的几个symbian V5手机软件
    查看>>
    non linear processor
    查看>>
    Non-final field ‘code‘ in enum StateEnum‘
    查看>>
    none 和 host 网络的适用场景 - 每天5分钟玩转 Docker 容器技术(31)
    查看>>
    None还可以是函数定义可选参数的一个默认值,设置成默认值时实参在调用该函数时可以不输入与None绑定的元素...
    查看>>
    NoNodeAvailableException None of the configured nodes are available异常
    查看>>
    Vue.js 学习总结(16)—— 为什么 :deep、/deep/、>>> 样式能穿透到子组件
    查看>>
    nopcommerce商城系统--文档整理
    查看>>